

Hochschule Bremerhaven Smart Mobility Institute

NOW-Studie "Klimafreundliche Kühlsysteme für den Straßengüterverkehr"

Ergebnisvorstellung, Online 20.07.2023

Prof. Dr.-Ing. Benjamin Wagner vom Berg

Prof. Dr.-Ing. Uwe Arens

Dipl.-Ing. Uta Kühne

Jan-Patrick Stenau

Agenda

- Institutsvorstellung Smart Mobility Institute
- Motivation
- Vorstellung Studienergebnisse
 - Status Quo Kühltransporte in Deutschland
 - Technische Analyse der aktuellen Kühlsysteme und Betrachtung Kältemittel
 - Regulatorischer Rahmen
 - Darstellung der Optionen emissionsfreier Kühlsysteme
 - Potentiale und Handlungsoptionen
- Fragenrunde/Diskussion

(

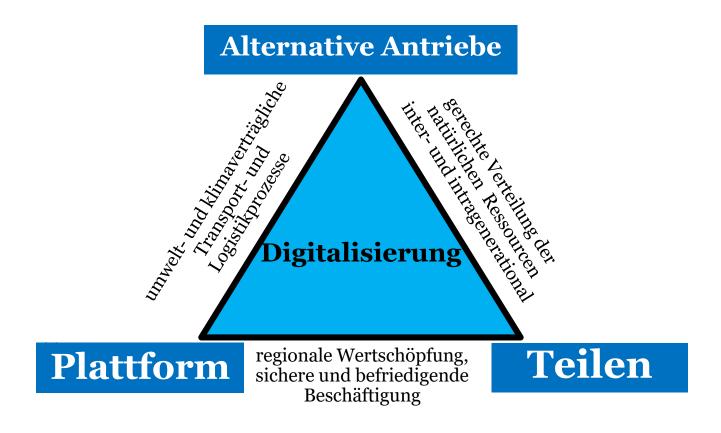
Hochschule Bremerhaven Smart Mobility Institute

Smart Mobility Institute

In-Institut HS Bremerhaven

Smart Mobility Institute

Hochschule Bremerhaven Smart Mobility Institute


- In-Institut der Hochschule Bremerhaven
- Gegründet 2021
- Ca. 18 Mitarbeiter insgesamt

- Gründungsmitglieder:
 - Prof. Dr.-Ing. Benjamin Wagner vom Berg (Institutsleitung)
 - Prof. Dr.-Ing. Uwe Arens
 - Prof. Dr. Miriam O'Shea

Q

Smarte Mobilitätslösungen = Digital + Nachhaltig!

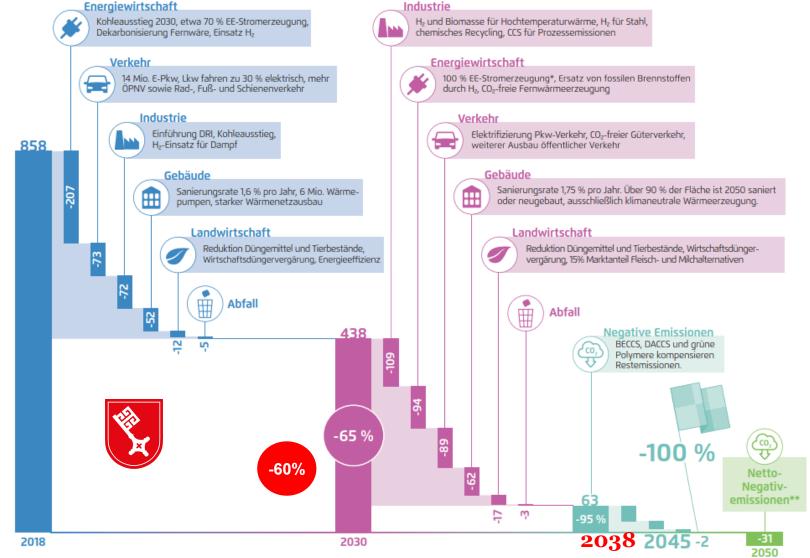
Hechschule Bremerhaven Smart Mobility Institute

www.smart-mobility-institute.de

3

Ausgesuchte Forschungsprojekte

- Vorraussichtlicher Projekstart Sep. 2023: **Green Delivery Analytics (GDA)** gemeinsam mit Hermes. mFUND (BMDV.
- Projektstart Jan. 2023: Implementierung einer H2-Rangierlok zur Reduktion klimarelevanter Emissionen im Hafenquartier (SH2unter). NIP(BMDV)
- Projektstart 01.07.2021: Resilient Regional Retail (R3) in der Metropolregion
 Nordwest. Ausschreibung "Nachhaltige Mobilität" der Metropolregion Nordwesten e. V.
- Sep. 2022-Mai 2023: Studie Klimafreundliche Kühlsysteme für den Straßengüterverkehr. Auftrag NOW (BMDV).
- Okt. 2021-Dez. 2022: **Konzept zur Umrüstung von Polizeifahrzeugen mit Brennstoffzellen (KUPoB)**. Nationales Innovationsprogramm Wasserstoff. BIS.
- Projektstart 01.09.2020: Wasserstofftechnologie Business Process Management
 Modeling (H2-BPMM). Ausschreibung "Digitalisierung" der Metropolregion Nordwesten e. V.
- Feb. 2021-Dez. 2023: **Konzept zur Umrüstung eines Kühl-Lkw (H2Cool)**. (AUF Angewandte Umweltforschung, Land Bremen)
- 01.07.2020 30.09.2021: CO2 -freie Hafen- und Logistikprozesse durch Wasserstofftechnologie am Beispiel der Stadt Brake – Wesermarsch (H2BrakeCO2). Hyland-Programm (BMVI).
- 15.06.2018 30.11.2020: Koordination und Hauptantragsteller **Pilotprojekt "Nachhaltige Crowd-Logistik Bremerhaven" (AUF Angewandte Umweltforschung, Land Bremen)** gemeinsam mit Rytle u. Krone.


Studienergebnisse

Motivation

Hochschule Bremerhaven Smart Mobility Institute

Motivation zur Studie

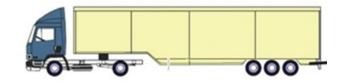
Maßnahmen und Ziele CO2-Reduktion Klimaneutral 2045 (Mio. t CO2-Äq.)

Motivation zur Studie

- Gründe Nachfragesteigerung im Lebensmittelbereich:
 - Veränderung der Ernährungsgewohnheiten
 - Zunahme von Singlehaushalten
 - gesteigerte Anforderungen an die Produktqualität
- Jährlicher Umsatz von 15,924 Mrd. EURO (3,773 Mio. t) mit Tiefkühlprodukten
- Nachfrage nach Frische- & Tiefkühlprodukten ↑
 → Anteil der temperaturgeführten Transporte ↑
- Nutzfahrzeuge mit einem zulässigen
 Gesamtgewicht > 3,5 t verursachen ca. 38 Mio. t
 CO2 pro Jahr mit steigender Tendenz
- LKW > 26 t zulässigem Gesamtgewicht weniger als 10 % Anteil aller Nutzfahrzeuge im Bestand aus, aber ca. 50 % der Emissionen

Studienergebnisse

Status Quo Kühltransporte in Deutschland

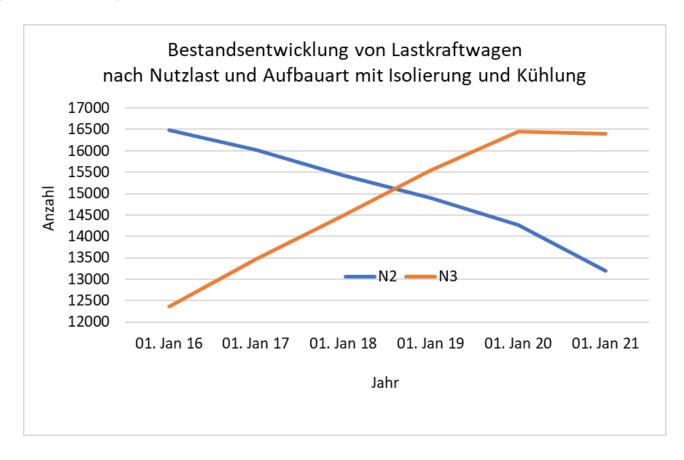

Hochschule Bremerhaven Smart Mobility Institute

Status Quo Kühltransport in Deutschland

Beschreibung der auf dem Markt befindlichen Fahrzeuglösungen und deren Unterschiede

Betrachtungsgrenzen

- Betrachtung der Nutzfahrzeugklassen N2 und N3 sowie der Anhängerklassen O3 und O4
- Fahrzeugart und Ausstattung hängen stark vom Einsatzzweck und dem Einsatzbereich ab
- Hauptsächliche Unterscheidung nach Sattelzug, Motorwagen mit Kühlkoffer oder BDF-Wechselbrücke
- Sattelzüge überwiegend mit Kühlaggregat in Stirnwandmontage, Motorwagen überwiegend mit Überdachmontage
- Anteil der Sattelzüge am Güternah- und Verteilverkehr nimmt zu
- Potential von Lang-LKW ist auch in der Kühl-Logistik vorhanden


Status Quo Kühltransport in Deutschland

Erfassung und Auswertung von (Neu-)Zulassungszahlen von Kühl-LKW in Deutschland

Statistik des Kraftfahrtbundesamtes Fahrzeugzulassungen (FZ 25)

- Alternativ Marktdaten des Verbands Deutscher Kühlhäuser & Kühllogistikunternehmen e.V. betrachtet
- Nur leichte Differenzen festgestellt

Anhänger		03 > 3,5 t - 10 t	04 > 10 t
	01. Jan 21	671	44383
	01. Jan 20	920	44357
	01. Jan 19	928	43329
	01. Jan 18	968	41010
	01. Jan 17	985	40011
	01. Jan 16	1006	38702

Hochschule Bremerhaven Seite 12

Status Quo Kühltransport in Deutschland

Identifizierung der Einsatzorte der Kühlsysteme

KBA-Statistik "Verkehr deutscher Lastkraftfahrzeuge – Güterbeförderung", Jahr 2021 - nach Konsumgüter zum kurzfristigen Verbrauch – Nahrungs- und Genussmittel (NST - 2007)

	Fahrten mit La	dung		
Güterabteilung Nahrungs- und Genussmittel			Beförderte Gütermenge in 1.000 t	Ladevermögen in 1.000 t
Nahbereich - Gesamtverkehr	6 670,8	172 310,3	87 615,1	149 306,7
Regionalbereich - Gesamtverkehr	8 955,0	846 687,7	117 590,4	198 612,8
Fernbereich - Gesamtverkehr	8 327,6	2 617 707,8	118 396,2	209 498,9

Laut BAG - Bundesamt für Güterverkehr, 2021:

Nahverkehr: bis 50 km

Regionalverkehr: von 51 km bis 150 km

Fernverkehr: ab 151 km

Studienergebnisse

Technische Analyse der aktuellen Kühlsysteme und Betrachtung Kältemittel

Hochschule Bremerhaven Smart Mobility Institute

Technischer Überblick zu Systemen zur Effizienzsteigerung und Minderung der Emissionen

Auswahl technische Maßnahmen der Kühlaggregat- und Trailer-Hersteller

- Optimierung der Regelungs- und Steuerungsstrategien
- Verbesserung der Motorentechnik
- Senkung der Geräuschemissionen und des Kältemittelverbrauchs
- Solarintegration

15

Technischer Überblick zu Systemen zur Effizienzsteigerung und Minderung der Emissionen

Beispiel: Solar-Integration zur Energieversorgung

• Solar-Integration auf dem Dach und an den Seiten des (Kühl-)Aufliegers

Anwendung:

- Speisung Akku und Versorgung elektrischer Kühlaggregate
- Reichweitenverlängerung vollelektrischer LKW
- Versorgung Strombedarf Zugmaschine / LKW
- Senkung Kraftstoffverbrauch bei Hybrid-LKW

Anwenderbeispiel: Sono Motors und Chereau

•

Darstellung häufig eingesetzter Kältemittel und möglicher Substitute

Kältemittel, aktuell	GWP-Wert TTW	GWP-Wert WTW
R 404 A	3.920 (Martin Schmied and Wolfram Knörr, 2013, p. 32)	4.025 (Martin Schmied and Wolfram Knörr, 2013, p. 32)
R 410 A	2.088	2.177
R 452 A	2.140	nicht bekannt
Kältemittel, zukünftig	GWP-Wert TTW	GWP-Wert WTW
R 449 A	1397	nicht bekannt
R 454 C	148	nicht bekannt

Kältemittel	TTW THG-Emissionen	WTW THG-Emissionen	Nachfüllmenge
	in kg CO₂e/kg	in kg CO₂e/kg	in kg/Jahr
R 404 A	3.920	4.025	1,0
R 410 A	2.088	2.177	1,0
R 452 A	2.140	nicht bekannt	1,0
R 449 A	1.397	nicht bekannt	1,0
R 454 C	148	nicht bekannt	1,0

Kältemittel (1,0 l)	GWP-Wert TtW	GWP-Wert WtW
R 404 A	3.920	4.025
R 452 A	2.140	nicht bekannt
R 410 A	2088	2.177

Einsparpotenzial von R 452 A gegenüber R 404 A liegt beim TtW-Wert bereits bei 1780.

Alternative zu R 410 A ist ggf. R 32 mit einem GWP-Wert (TtW) von 675.

Hochschule Bremerhaven
Quelle: DSLV, Infraserv, Angaben Spedition

Darstellung häufig eingesetzter Kältemittel und möglicher Substitute

Fazit

- In neuen Kühlaggregaten kommen insbesondere die Kältemittel R 452 A und R 410 A zum Einsatz.
- Ältere Fahrzeuge führen noch das Kältemittel R 404 A, welches durch R 452 A substituiert werden kann.
- Dadurch kann bei GWP-TTW-Wert ein Einsparpotenzial von 1780 kg CO2e/kg bei 1,0 l Nachfüllmenge erreicht werden.
- Austausch von klimaschädlichen Kältemittel durch Kältemittel mit einem geringeren GWP-Wert führen zu Gesamtreduktion der direkten THG-Emissionen (TTW) um rund 64,4 % (R454 C führt sogar zu Reduktion von 96,2%)

18

Studienergebnisse

Regulatorischer Rahmen

Hochschule Bremerhaven Smart Mobility Institute

Regulatorischer Rahmen

Untersuchungsgegenstände

- Recherche und Darstellung der zulassungs- und genehmigungsrechtlichen Regelungen für Neufahrzeuge und Umbauten mit alternativen Antrieben
- Gefahrgutrechtliche Bestimmungen
- Einordnung der eingesetzten Kältemittel hinsichtlich der F-Gase-Verordnung
- Berücksichtigung der EU-CO2-Flottenzielwerte (Verordnung (EU) 2019/631) sowie des "Vehicle Energy Consumption Calculation Tool" der EU und der EU-Verordnung 2016/1628

Hochschule Bremerhaven Seite 20

Regulatorischer Rahmen

Europäische Abgas- und CO2-Gesetzgebung

EU-Verordnung (EU) 2019/1242

- Erstmals europäische Regulierung, die CO2-Flottenzielwerte für neue schwere Nutzfahrzeuge (SNF) festlegt.
- Flottengrenzwerte für SNF (im Vergleich zu 2019/2020):
 - Ab 2025: CO2-Minderung von mindestens 15 %
 - Ab 2030: CO2-Minderung von mindestens 30 %
- Als Bezugswert für die CO2-Emissionen gelten die durchschnittlichen spezifischen CO2-Emissionen in g CO2/tkm aller neuen schweren Nutzfahrzeuge in jeder Fahrzeuguntergruppe, ausgenommen Arbeitsfahrzeuge, für den Referenzzeitraum vom 1. Juli 2019 bis zum 30. Juni 2020.
- Neuer Vorschlag der EU-Kommission (2023):
 - Bis 2030: Absenkung auf 45 %
 - Bis 2035: Absenkung auf 65%
 - Bis 2040: Absenkung auf 90 %

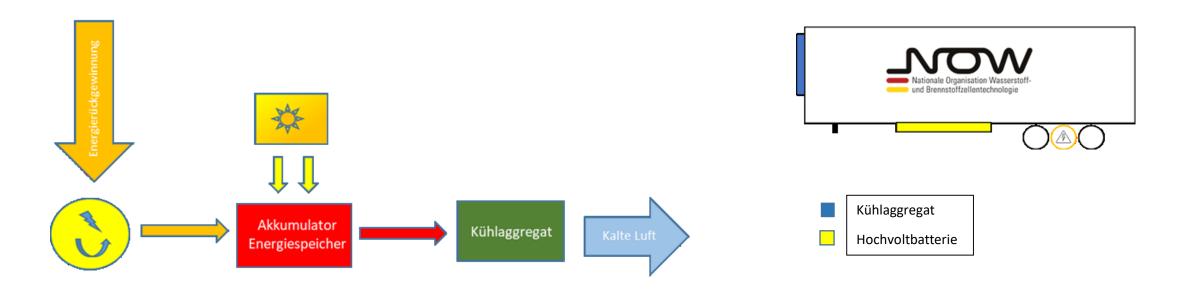
EU-Verordnung (EU) 2022/1362

- Seit 01. August 2022
- Prinzipien und Verfahrensweisen für die zukünftigen Anforderungen an die CO2-Zertifizierung von schweren Anhängern

Regulatorischer Rahmen

Einordnung der eingesetzten Kältemittel hinsichtlich der F-Gase-Verordnung

- Seit 01. Januar 2015 gilt die so genannte F-Gase-Verordnung (Verordnung (EU) Nr. 517/2014 über fluorierte Treibhausgase)
- Alternative Kältemittel zu FCKW weisen häufig ein klimaschädliches GWP-Potential auf. Über die F-Gase-Verordnung wird der Zugang und das Angebot an klimaschädlichen Kältemitteln reguliert und Richtlinien zur Handhabung und Inverkehrbringung erstellt.
- Maßnahmen:
 - Senkung der Emissionen fluorierter Treibhausgase des Industriesektors bis zum Jahr 2030 um 70 Prozent gegenüber 1990
 - Verschärfung der Regelungen zu Dichtheitsprüfungen, Zertifizierung, Entsorgung und Kennzeichnung
 - Schrittweise Beschränkung (Phase down) der Mengen an teilfluorierten Kohlenwasserstoffen (HFKW)
 - Verhängung von Verwendungs- und Inverkehrbringungsverboten


Studienergebnisse

Darstellung der Optionen emissionsfreier Kühlsysteme

Hochschule Bremerhaven Smart Mobility Institute

Untersuchung der technischen Umsetzung emissionsfreier Kühlsysteme

Konzept Rekuperationsachse und Kühlung

Hochschule Bremerhaven Seite 24

Marktrecherche zu Entwicklern/Herstellern von emissionsfreien Kühlaggregaten -Kühlaggregat und Trailer

1. Konzepte mit Rekuperationsachse und Kühlung

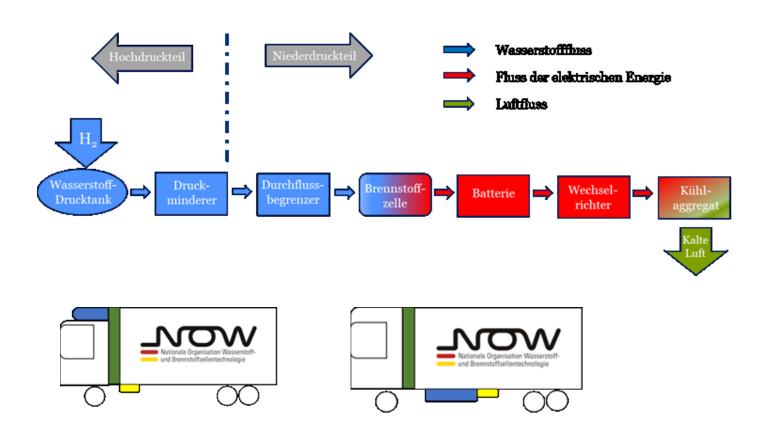
Weitere Anwendungsmöglichkeiten:

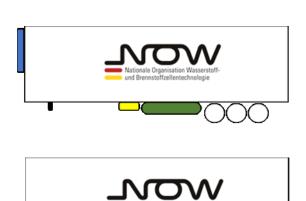
- Unterstützung einer konventionellen Diesel-Sattelzugmaschine im Antrieb (Prinzip "eTrailer")
- Verlängerung der Reichweite einer Zugmaschine mit BEV-Antrieb (Prinzip "eTrailer")

Anwender/Hersteller:

- eCool Liner und eCool Liner mit Celsineo Kühlaggregat (Trailer Dynamics, Krone und Liebherr)
- Vector eCool mit E-Drive-Technologie (Carrier Transicold, mit elektronischem Plug-In-System von AddVolt)

BPW


Schmitz Cargobull


- BPW und ThermoKing, Energieversorgung Kühlaggregat mit ePower-Achse
- Schmitz Cargobull S.KOe

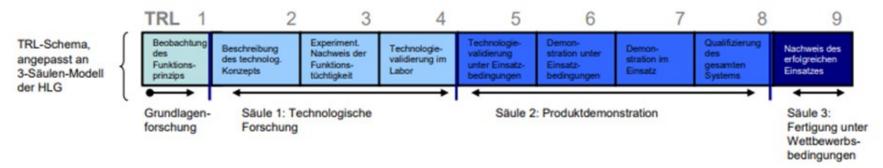
Untersuchung der technischen Umsetzung emissionsfreier Kühlsysteme

Konzept Wasserstoff-Brennstoffzellen-Kühlsystem

Ç

Marktrecherche zu Entwicklern/Herstellern von emissionsfreien Kühlaggregaten 2. Konzepte mit einem Wasserstoff-Brennstoffzellen-Kühlsystem

Französisches Projekt ROAD - Hydrogen refrigerated semi-trailer von Chereau

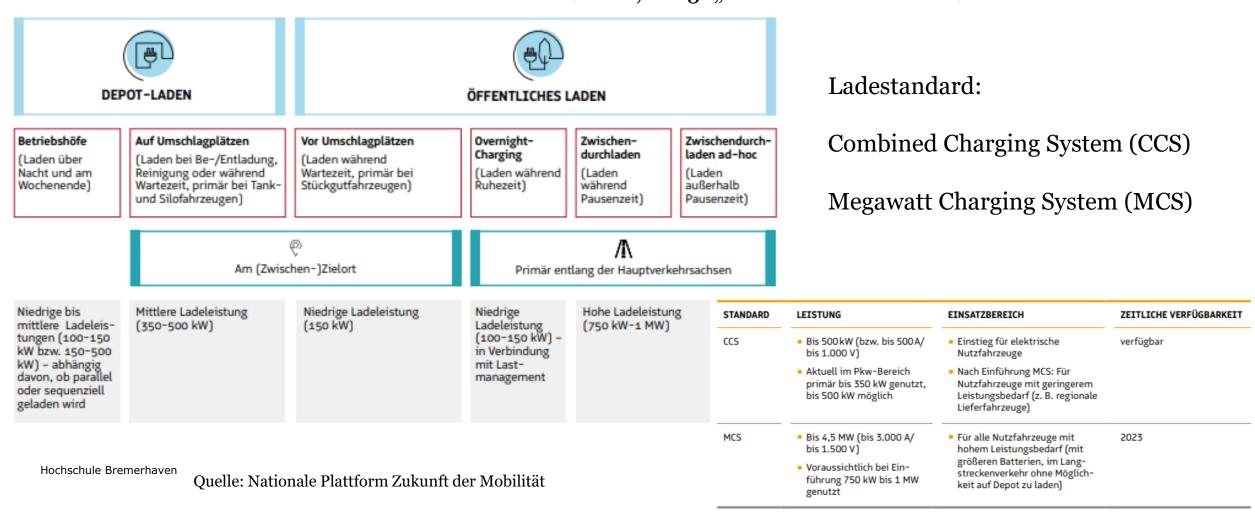

- Partnerschaft zwischen Chereau, Amvalor, FCLab (Forschungseinrichtung), Tronico, Carrier Transigold, Malherbe (Spedition Test des Aufliegers) und weitere.
- Wasserstoffversorgung eines Kühlaggregats über eine 11 kW Brennstoffzelle, weitere Maßnahmen zur Emissions-Einsparung
- H2-Tanks: 350 bar, 14 kg H2, auf rechter Trailerseite (anstelle Palettenstaukästen)
- Tankfüllung innerhalb von 10 Minuten
- Laufzeit 09.2016 09.2019, 5,5 Mio. Euro
- Nachfolgeprogramm: From ROAD to REAL

Untersuchung der technischen Umsetzung emissionsfreier Kühlsysteme

Bewertung Technologiereifegrad

Konzept Rekuperationsachse mit Kühlung: TRL 7 bis 9

- Bestehende Erfahrungen aus BEV-Fahrzeugen und der Rekuperationsachsen-Technologie
- Anwendungsfeld "Kühlung" ist noch relativ neu
- Hauptfokus: Zusammenspiel der Komponenten, Optimierung Betriebsmodi, Anpassung an Anwendungsfelder


Konzept Wasserstoff-Brennstoffzellen-Kühlsystem: TRL 4 bis 5

- Bisher wenig (Langzeit-)Erfahrungen und kein Einsatz unter Realbedingungen
- Großer Forschungs- und Entwicklungsbedarf

Betrachtung der Betankungs- und/oder Ladeinfrastruktur

Ausschnitt Nationale Plattform Zukunft der Mobilität, AG 5: "Ladeinfrastruktur für batterieelektrische LKW"

Betrachtung der Betankungs- und/oder Ladeinfrastruktur

Initiativen für temperaturgeführte Transporte: NomadPower:

Ladesystem für Kühlaggregate (Sockel)

Zwei CEE 32 A/400 V 5-poliger Stecker für Drehstrom-Anschlüsse

Ladekapazität: je 22 kW

Zugang und Kontrolle über NomadPower App und Webseite

Mit Bezahlfunktion

Kosten: 3.950,- € ohne MWSt.

Wallbox für Kühltrailer in Vertriebszentren und Kühlhäusern

Bis zu 4 CEE 32 A/400 V Anschlüsse

Aktivierung durch mobile App und Webseite

Kosten: 3.250,- € ohne MWSt.

-

Studienergebnisse

Ökonomische und ökologische Analyse aktueller und emissionsfreier Kühlsysteme

Hechschule Bremerhaven Smart Mobility Institute

Ökonomische und ökologische Analyse aktueller und emissionsfreier Kühlsysteme

Ökonomische Analyse aktueller und emissionsfreier Kühlsysteme

Vergleich Motorwagen

	Diesel Motorwagen + Diesel Aggregat [€]	Diesel Motorwagen + E- Aggregat [€]	Diesel Motorwagen + H2- Aggregat [€]	
km-Satz	1,00	0,96	1,04	
Tages-Satz	489,96	472,62	508,51	
	FCEV Motorwagen + Diesel Aggregat [€]	FCEV Motorwagen + E- Aggregat [€]	FCEV Motorwagen + H2- Aggregat [€]	
km-Satz	1,25	1,21	1,28	
Tages-Satz	609,87	592,53	628,43	
	BEV Motorwagen + Diesel Aggregat [€]	BEV Motorwagen + E- Aggregat [€]	BEV Motorwagen + H2- Aggregat [€]	
km-Satz	0,91	0,87	0,95	
Tages-Satz	445,60	428,27	464,16	

km-Satz = Gesamte Fahrzeugkosten / Jahreslaufleistung Tagessatz = Gesamte Fahrzeugkosten / Jahreseinsatzzeit (Tage)

Ökonomische und ökologische Analyse aktueller und emissionsfreier Kühlsysteme

Ökologische Analyse aktueller und emissionsfreier Kühlsysteme

Berechnung Energieverbräuche und THG-Emissionen

Diesel B7	Energieverbrauch F in I/100 km	WtW-THG-Emissionen in kg CO ₂ e/100 km
Sattelzugmaschine	26	81,90
Motorwagen	26	81,90

WtW-THG-Emissionen Sattelzug und Motorwagen

	brauch F in kg/100 km	Emissionen grün WE-Off in	Emissionen grün WE-On in	Emissionen grün (WE-On)/grau in	Emissionen grau Dampfref. in	WtW-THG- Emissionen Strommix in kg CO₂e/100 km
Sattelzugma- schine	7,48			42,63		205,43
Motorwagen	7,48	2,24	3,99	42,63	77,29	205,43

	in kWh/100 km	Strommix 2020 in	WtW THG-Emissionen, Grünstrom aus WE-On und Off in kg Co₂e/100 km
Sattelzugmaschine	106	44,45	2,31
Motorwagen	106	44,45	2,31

Reduktionspotential der Emissionen:

97, 2 %

Ökonomische und ökologische Analyse aktueller und emissionsfreier Kühlsysteme

Ökologische Analyse aktueller und emissionsfreier Kühlsysteme

Berechnung Energieverbräuche und THG-Emissionen

Diesel-/Elektro- Kühlaggregat	zeit [h]	zeit [h]	Emissionen Diesel in kg CO ₂ e		WtW-THG- Gesamtemissionen in kg CO₂e
Kühlaggregat Sattelzug	1.200	350	13.884,73	1.174,04	15.058,77
Kühlaggregate Lastzug	2.400	700	18.462,94	1.555,6	20.018,54

WtW-THG-Emissionen bezogen auf die Jahreseinsatzzeit für Kühlaggregate Diesel/Elektro

•	1		WtW THG-Emissionen, Strom aus WE-On und Off in kg CO₂e
Kühlaggregat Sattelzug	350	1.174	61,00
Kühlaggregate Lastzug	700	1.555,6	80,82

analog Konzept "Rekuperationsachse + Kühlung"

Reduktionspotential der Emissionen: 99,9 %

Quellen: DSLV-Leitfaden, Studie Öko-Institut, Studie DWGW / ebi, eigene Berechnungen

Hochschule Bremerhaven Seite 34

Studienergebnisse

Potentiale und Handlungsempfehlungen

Hochschule Bremerhaven Smart Mobility Institute

Potentiale klimafreundlicher Kühlsysteme

- Konfigurationen mit batteriebetriebener Sattelzugmaschine und Konzept "Rekuperationsachse + Kühlung" weisen heute schon geringste Km- und Tagessätze auf
 - Konfigurationen mit FCEV Sattelzugmaschine und Wasserstoff-Brennstoffzellen-Kühlsysteme erweitern Einsatzmöglichkeiten (Reichweite + Zuladung), sind aber (heute noch) teuer
- ökologisches Einsparpotential temperaturgeführter Transporte durch Einsatz von grünem Strom und grünem Wasserstoff besonders hoch: 7,43 Mio. t CO2-e (gesamter Fahrzeugbestand)
 - Ausbau On- und Offshorewindenergie, Solar sowie Import von grünem Wasserstoff
- Durch Austausch klimaschädlicher Kühlmittel signifikant Treibhausgasemissionen reduziert: Austausch des Kältemittels R 452 A durch das Kältemittel R 449 A hätte bspw. ein Reduktionspotential von 77.480 t TTW-THG-Emissionen
- Henne-Ei-Problem bei Infrastruktur ist zu lösen
 - Entscheidungsprägend sind grundsätzlich die Traktionsalternativen (FCEV / BEV)
 - Öffentliche Infrastruktur für Nutzfahrzeuge heute nicht ausreichend
 - Kühlsysteme benötigen nur niederschwellige Infrastruktur (400 V Drehstrom-Anschluss)

Hochschule Bremerhaven Seite 36

HandlungsempfehlungenVerlagerung, Vermeidung, Infrastruktur

- Verlagerung von Kühltransporten auf nachhaltigere Transportmittel
 - Stärkung des Kombinierten Verkehrs bei temperaturgeführten Transporten
 - Verlagerung auf Schiene Energieeinsparungen bis 75% pro tkm möglich + grüner Strom nutzbar
- Vermeidung = Reduktion von Transporten
 - Anteil der Leerfahrten von LKW 2021 im deutschen Inlandsverkehr bei 37,6 % (KBA)
 - → Einsatz von digitalen TMS und Frachtenbörsen (!)
 - Verhinderung von durch Verlader vertraglich geforderte Rückladungsverbote und Exklusivladungsgebote
- Infrastrukturausbau
 - Genereller Ausbau der Betankungs- und Ladeinfrastruktur für Wasserstoff- und Elektro-Nutzfahrzeuge an Rastanlagen, Autohöfen, Parkplätzen und Be-/Entlade-Depots sowie auf Betriebshöfen
 - Keine gesonderte H2-Infrastruktur nur zur "Betankung" der Kühlaggregate notwendig
 - Ladedienstleistung Traktion an Kühlung! (roter Stecker)

7

Handlungsempfehlungen -- Förderung u. Regulatorik

- Pull-Maßnahmen (Anreize durch Förderprogramme)
 - Förderung der Entwicklung und Anschaffung von emissionsarmen Kühlaufliegern (Erweiterung KSNI)
 - Fokussierung der Förderung von F&E-Projekten auf die Entwicklung innovativer emissionsarmer (Kühl-) Trailersysteme
- Push-Maßnahmen (verbunden mit Zwangsmaßnahmen und/oder Verboten)
 - Maut und Besteuerung
 - Förderung von emissionsfreien Kühlaufliegern durch Steuerbefreiung und ggf. Mautbefreiung / Mautanpassung bei Kombination aus konventioneller SZM und emissionsfreien Kühlauflieger
 - Teilweise Kfz-Steuerbefreiung für Trailer mit emissionsarmen Kühlaggregaten bzw. Energieversorgung, Rekuperationsachsen, Solarsystemen
 - CO2-Bepreisung
 - F-Gase-Verordnung
 - Verbote, wie Fahrverbote, Produktionsverbote

Seite 38

Handlungsempfehlungen – Fahrzeugtechnologie

	Diesel(-Elektro) - Kühlaggregat	Rekuperationsachse + Batterie + Kühlung	Wasserstoff- Brennstoffzellen- Kühlsystem
Traktion fossil (Diesel inkl. LNG, CNG etc.)	Geringe CO2-Reduktion möglich, schnellstmögliche Substitution	Heute bereits im Einsatz, Brückentechnologie, ermöglicht zumindest CO2-arme Kühlung, ggf. Kombination mit niederschwelliger Ladeinfrastruktur	Nicht sinnvoll
BEV	Nicht sinnvoll	Hohes Potential für CO2-arme Kühltransporte, hoher TLR, leistungsstarke Ladeinfrastruktur erforderlich, ggf. nicht alle Bedarfe abdeckbar. Bei Nah- u. Regional-verkehr + Nutzung Ladeinfrastruktur in Logistikzentren heute schon einsetzbar	Sinnvoll nur dann, wenn Starkstromladung am Kühlaggregat verfolgt wird, da sonst unterschiedliche und kostenintensive Energieinfrastruktur für Traktion und Kühlung
FCEV	Nicht sinnvoll	Sinnvoll nur dann, wenn Starkstromladung am Kühlaggregat verfolgt wird, da sonst unterschiedliche und kostenintensive Energieinfrastruktur für Traktion und Kühlung	Hohes Potential für CO2-arme Kühltransporte, relativ hoher TLR, erfordert H2-Tankinfrastruktur, Abdeckung aller heutigen Bedarfe inkl. Fernstrecke + hohe Transportgewichte möglich

Hochschule Bremerhaven Seite 39

Hochschule Bremerhaven Smart Mobility Institute

Fragenrunde/Diskussion

Vielen Dank!

Institutsleitung: Prof. Dr.-Ing. Benjamin Wagner vom Berg Hechschule Bremerhaven Smart Mobility Institute

Smart Mobility Institute an der Hochschule Bremerhaven An der Karlstadt 8

27568 Bremerhaven

Mail: benjamin.wagnervomberg@hs-bremerhaven.de

www.hs-bremerhaven.de

~