

Autostack Industrie

Systemumgebung und Schlüsselkomponenten

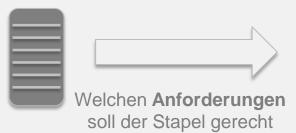
26.06.2018 | Frankfurt | Dr. Oliver Berger

Gliederung

- Ziele und Vorgehen innerhalb des Arbeitspaketes (AP1)
- Systemumgebung
 - Fahrzeug- und Systemanforderungen
 - Skalierungs-/Modularisierungsansatz
 - Systemverschaltung Rumpfsystem
- Betriebsbedingungen 3.
 - Definition und Randbedingungen
 - Modellierung
 - Optimierung und Ergebnisse

1. Ziele/Vorgehen innerhalb des Arbeitspaketes (AP1) Stack-Spezifikation und Assessments

- i. Entwicklung der **System- und Stack-Anforderungen** eines massenfertigungsfähigen Stacks für Automobilanwendung (unter Berücksichtigung der Stapel-Skalierbarkeit zwischen 50 und 150 kW)
- Definition von Betriebsbedingungen und Betriebsparametern ii.
- iii. Definition eines "Rumpfsystems" (inklusive Luft-, Wasserstoff- und Kühlstrecke)
- iv. Analyse und Verfolgung der design-spezifischen Stack- und Komponentenkosten zur Sicherstellung der Zielkostenerreichung


1. Ziele/Vorgehen innerhalb des Arbeitspaketes (AP1) Stack-Spezifikation und Assessments

Ziel: BZ-Stapel

Benötigt: BZ-System

Hilfsgröße: Fzg. Anforderung

werden?

Welchem Einsatzszenario soll das BZ-System gerecht werden?

Anforderungskaskade

- Beispielhaftes Referenz-Einsatzszenario

System-Anforderung

- System-Anforderungsdokument

Stapel-Anforderung

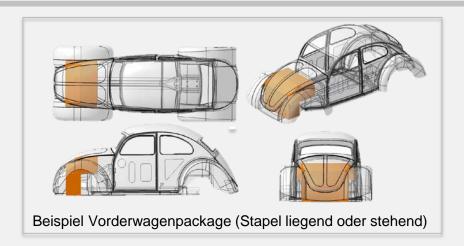
- Stapel-Anforderungsdokument

2. Systemumgebung

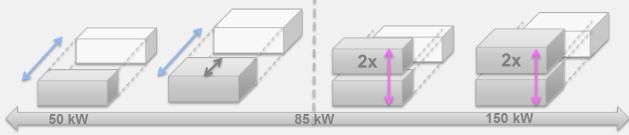
Fahrzeug- und Systemanforderungen

Basis: Anforderungsdokumentation v2.0

Zuordnung	Anforderung	Einheit	Wert
Fahrzeug	Antriebsstrangkonzept	-	PHEV und HEV
	Umgebungstemperatur bis Derating	°C	35
	min. / max. Umgebungstemperatur für Betrieb	°C	-25 / 50
	min. /max. Motorraumtemperatur	°C	-25 / 95
	Fahrzeugneigung /Rollwinkel	0	+/-18
System allgemein	Systembetriebsstunden (unter Last)	h	6000
	Anzahl Starts (key on/key off)	-	30000
	Systemkosten	€/kW	60-80
	Leistungsdichte	kW/dm³	0,85
Betrieb	min./max. Systemleistung BOL	kW	3/70
	Leistungsdynamik t ₉₀ -Zeit (Idle> 90 % P_max.)	S	3
Höhenbetrieb	max. Höhe	m ü.NN	4300
	zulässige Höhe bis Derating	m ü.NN	600
	max. Systemleistung bei max. Höhe	kW	40
	Systemleistung (BOL) bei 2000 m Höhe	kW	56
Froststart	Anzahl Froststarts	-	1000
	Dauer zum Erreichen von 50 % von P_max aus -25 °C	S	30
Heißbetrieb	Umgebungstemperatur bis Derating	°C	35
	Anteil des Heißbetriebs an der Gesamtbetriebsdauer	h	300
	maximale KM-Temperatur am Stapelaustritt	°C	95
	max. Dauer pro Heißlastfall	S	1200

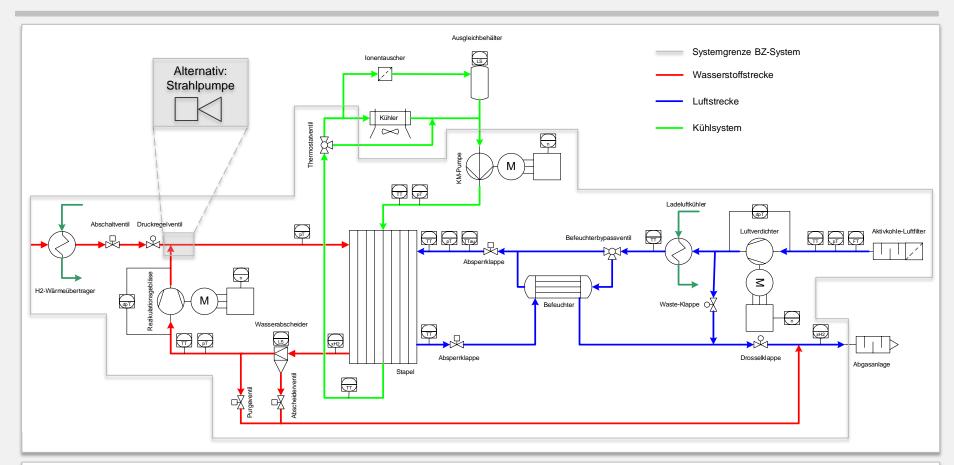


2. Systemumgebung


Skalierungs-/Modularisierungsansatz

$$P_{Stapel} = U_{Stapel} \times I_{Stapel}$$

$$P_{Stapel} = m_{Row} \times (U_{UC} \times n_{UC}) \times (j_{UC} \times A_{UC})$$



2. Systemumgebung

Systemverschaltung Rumpfsystem

Das Rumpfsystem dient als Hilfsgröße für die Definition der Stapelanforderungen. Die tatsächliche Umsetzung der einzelnen OEM kann hiervon abweichen.

Definition und Randbedingungen

Betriebsbedingungen (Operating Conditions)

 $p_{cathode}$

 λ_{anode}

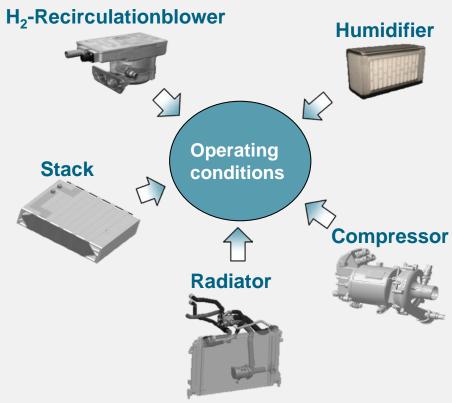
 $dp_{anode-cathode}$

H₂-fraction

 ϕ_{cathode}

 $artheta_{
m coolant\,stack\,in}$

 $\lambda_{\rm cathode}$

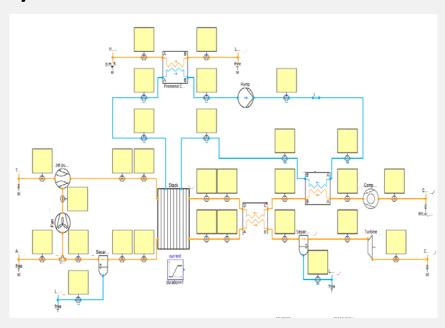

 $\Delta \vartheta_{coolant \, stack}$

Nebenbedingungen:

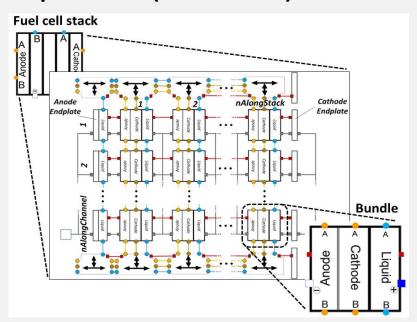
- Stabilitätskriterien (z.B. Flüssigwasser-Management)
- Minimale Stöchiometrien
- Membranfeuchte
- Komponentengrenzen (z. B. Drücke, Temperaturen, etc.)

Optimierungsziele:

- Systemeffizienz
- Regelbarkeit
- Lebensdauer



Modellierung



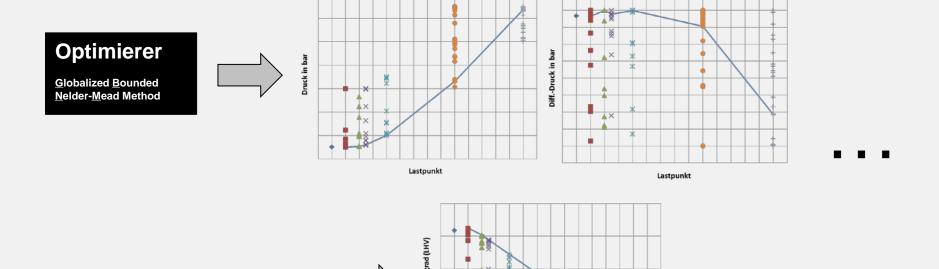
Systemmodell

- Systemverschaltung gemäß Rumpfsystem
- Parametrierung der Komponentenmodelle

Stapelmodell (diskretisiert)

Parametrierung von:

- Stapelkonfiguration (Zell- und Kanalanzahl, etc.)
- Geometrieparameter der BPP
- Membranwiderstände, Kinetikparameter



Optimierung und Ergebnisse

Optimierungsverfahren liefert "wirkungsgrad-optimale" Betriebsbedingungen über den gesamten Lastbereich unter Einhaltung der Nebenbedingungen

Lastpunkt

Optimierung und Ergebnisse Volllast

Subsystem	Parameter	Einheit	Wert	Generelle Anforderung	
Stapel	Stapelleistung (BOL)	kW	87		
System	Luftverdichter	kW	9		
	KM-Pumpe	kW	0,6	Leistungsaufnahme → Effizienz Robustheit (Frostfähigkeit, Heißbetrieb) Dynamik	
	Rezirkulationsgebläse	kW	0,6		
	12V-Verbraucher (Steuergeräte, Aktoren, Sensoren)	kW	0,3		
	Systemleistung (ohne DC/DC-Wandler)	kW	76,5		
Luftstrecke	Stapeleintrittsdruck	bar	2,4	Strömungswiderstände → Effizienz Reinheitsanforderungen	
	Massenstrom (trockene Luft)	g/s	70		
	rel. Feuchte Stapeleintritt	%	52		
	Stapeleintrittstemperatur	°C	80		
H2-Strecke	Systemeintrittsdruck	bar	max. 20		
	Wasserstoffverbrauch	g/s	1,4	Frostfähigkeit Reinheitsanforderungen	
	Stapeleintrittsdruck	bar	2,95		
	H2-Konzentration am Stapelaustritt	%	72		
	Rezirkulationsvolumenstrom	l/min	300		
Kühlung	max. Stapeleintrittsdruck	bar	3,0		
	Volumenstrom	l/min	170	Reinheitsanforderungen	

Stapeleintrittstemperatur

 $^{\circ}$ C

70

autostack industrie

Vielen Dank für Ihre Aufmerksamkeit!

