
5. Fachkonferenz Elektromobilität vor Ort Leipzig, February 27th 2018

ZeEUS

Making electric buses a reality

Dr. Michael Faltenbacher, thinkstep AG

Urban bus: market share projections by propulsion technology in Europe

Source: ZeEUS/UITP(VEI) - 2017

5 challenges to address for eBus deployment in Europe

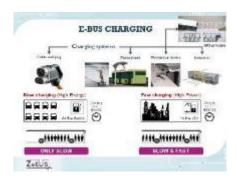
High upfront cost

New challenging operations

UITP tender structure

ADVANCING

PUBLIC


New ways to procure:

- Vehicles & Equipments
- Operation services

Reinforcing cooperation

energy/bus

Standardisation / Interoperability

thinkstep

High Upfront cost

E-bus = 2 x the price of a conventional bus

- battery=45% cost
- Lifetime is a key (battery, body)
- Disposal of batteries

Charging infrastructure cost and deployment

- Fast charging infrastructure
- Or...More buses (spare)

Local Depreciation rules

Very local TCO models

Different maintenance cost

UITP

Procurement & contracts

New technology risk: prevention and management Functions sharing between stakeholders

- Project governance including ALL actors
 - PTA, PTO, Industry, Grid Owner, Electricity Supplier, etc.
- clear definition of roles & responsibilities:
 - Who pays? Who owns rolling stock/infra?

Tender of a system (not only a vehicle)

- Modelling the tender evaluation criteria
- UITP Tender Structure document can be a basis

• Equipment ownership: what happens at the end of a contract?

thinkstep

Think about decommissioning of harmful components

Positive externalities

- Emissions linked to air quality
- Noise

Interoperability Standardisation of charging infrastructure is key

 Different implementations of the charging philosophy

Slow charging / overnight

- CCS easy to be adopted
- Plug or same than opportunity

Fast charging / opportunity

- Many charging solutions
- Industry joint effort & agreements

Use Cases for standardisation - www.zeeus.eu

UITP

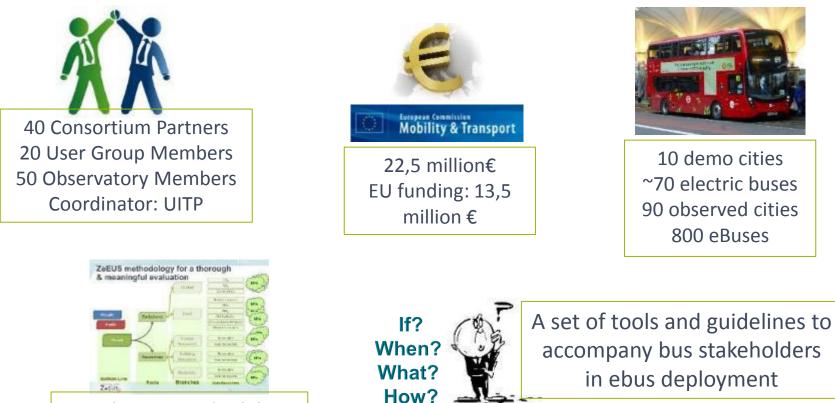
Energy sector: building trust & cooperation

Different market / service models in cities

Joint collaboration x optimal location of charging points

- Reduction of cabling
- Quality of the electricity distribution network

Electricity cost


- Urban vs industrial areas
 Exploring opportunities
- Smart charging
- Use of PT power network (trams, metro)

UITP

ZeEUS: a project to support electric bus deployment (2013-2018)

1 evaluation methodology

thinkstep

accompany bus stakeholders

ADVANCING

PUBLIC RANSPORT

ZeEUS Demo Cities (10 cities, 70 eBuses)

Ebus deployment

IF – Know & Decide

- Develop clean-buses deployment strategy
- Exchange of experiences
- Define own operation needs

The **Bonn** vision to 2030: the complete conversion from diesel to ebuses

- Market exploration
- Feasibility study
- Fields tests
- Technical specifications
- Charging concept
- Operational concept

→ Complete Conversion of all conventional diesel buses to full electric propulsion until 2030 by decision of the Executive Board

ZeEUS eBus Report

An overview of electric buses in Europe

Zero Emission Urban Bus Systems – second ediTion

- Sweden 0 Finland Norway 85 Estonia 0 Latvia Moscow Москва Denmark Lithuania United Kingdom 0 0 Belarus Pcan Ireland Czechi Ukraine 000 Slov:Qa Vienna-Moldova lustria Hungary France Romania Croatia Serbia 00 0 Italy Bar na Bulgaria Rome Madejd Portugal 0 Istanbul Spain Greece Turkey 0 Syria Tunisia anon Morocco Jorgan
- BEV, PHEV & Battery Trolleys
- 90 cities, 800 vehicles
- 32 bus manufacturers
- 8 electric charging solutions providers

www.zeeus.eu

Second Edition October 2017 UITP Bus Conference

Operational needs

- Service Design according to today's reliability of the technology
 - Trade-off = flexibility vs autonomy
- ebus performance = conventional bus performance?
 - A good analysis of the operational needs is key
 - Define the right type of eBus solution for the operational needs
 - Influence of driving style
 - Influence of on-board auxiliaries

A chosen technology performs well **if** put in its "**best operational conditions**"

Source: EBSF Project (DG-R&I) Study by VDV and *Prof. Dr. Ralph Pütz (Landshut University)*

Ebus deployment

IF – Know & Decide

- Develop clean-buses deployment strategy
- Exchange of experiences
- Define own operation needs

WHEN – Plan & Regulate

- System approach
- Urban policies
- Funding & Financing
- Project governance

WHAT – Select & Procure

- Standardised/ interoperable solutions
- Procurement process principles
- Indicators for procurement evaluation
- Relationship with energy providers

DVANCING

WHEN: Plan, Regulate, Finance

- Ensuring support from competent Authorities
 - Ask for Urban policies to get maximum advantage by using Clean (electric) Buses in the city
 - Possible use of **PT power network** for charging eBuses
- Analyse the different legislation impacting eBuses
 - Ex. emissions regulations...
- Most suitable funding & financing schemes
- Embrace system approach
- Set up project governance
 - Optimise the relation between PT, Energy and ITS in cities, with mutual convenience
 - Possible contribution of eBuses to smart-grid
 - Define best contractual conditions for energy provision

Don't rush, it is all about planning

WHAT: Specify, Procure, Deploy

 Define risk sharing schemes between Municipalities, Authorities and Operators according to their role

- Open table with industry, procuring entity, regulators and financing actors – **Develop partnerships**
- Stimulate and support procuring entities to adapt tender process to eBuses peculiarities
 - Develop the culture of "system" procurement (like
 - Specs, Indicators, Evaluation Methodology
 - UITP Tender Structure document
 - **E-SORT:** reproducible test cycles for on-road tests of buses (consumption oriented)
- Facilitate infrastructure deployment processes for
 - Building permits, depot upgrade, energy cable connections, roadworks...

Being prepared ...

The pantograph pole has to be entirely redesigned to respect the snow clearance regulations

IT communication test!

25

Gaspipe – not shown on any city map!

Ebus deployment

IF – Know & Decide

- Develop clean-buses deployment strategy
- Exchange of experiences
- Define own operation needs

WHEN – Plan & Regulate

- System approach
- Urban policies
- Funding & Financing
- Project governance

WHAT – Select & Procure Standardised/ interor

- Standardised/ interoperable solutions
- Procurement process principles
- Indicators for procurement evaluation
- Relationship with energy providers

HOW – Operate & Maintain

- •Training (new competencies, processes)
- Operations (including charging operations)

DVANCING

26

- Maintenance (new garage settings)
- Decommissioning (battery after-life)

ZeEUS eBus Performances

ZERO EMISSION URBAN BUS SYSTEM (ZeEUS) PROJECT For the period Aug 2015 - Jan 2018

Figures coming from 8 cities across Europe

2,349,895 km The distance travelled by ZeEUS buses running in pure electric mode¹ **892,960** litres²

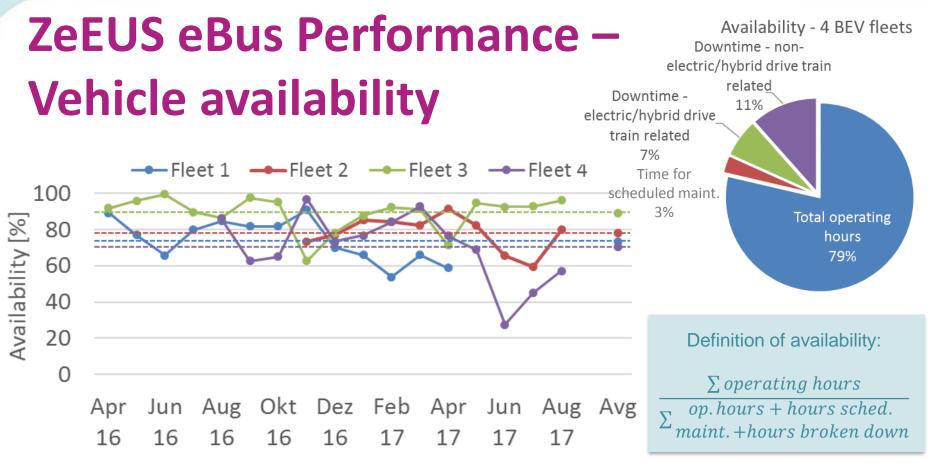
The amount of diesel fuel saved by the ZeEUS bus project¹ 957 tons³ The amount of carbon dioxide emissions prevented by the ZeEUS bus project¹

DVANCING

¹ For vehicles increasing from 12 to 76 buses (65 BEV and 11 PHEV

² Assuming 38I/100 km

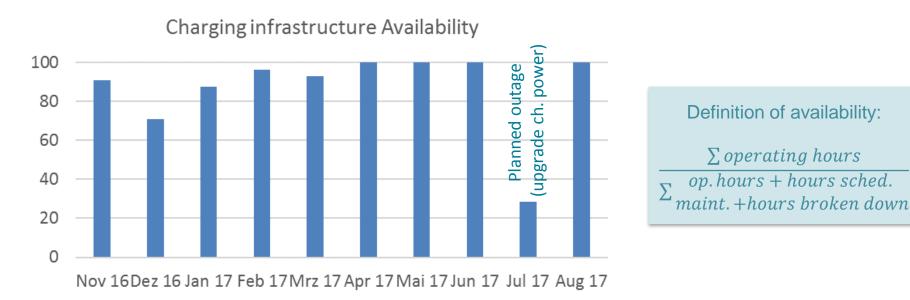
³ ISO 16258 factor for Diesel and GaBi factor for national grid mixes (2014) and diesel supply



thinkstep

DVANCING

- Av. vehicle availability 4 fleets ~79% (70 89 %, 2-4 buses per fleet)
- Share of downtime for non-electric drive train related is lower
- \rightarrow Battery electric busses are a maturing technology
- \rightarrow Plan for higher vehicle reserve at the beginning



thinkstep

ZeEUS eBus Performance – Infrastructure availability

• E-bus based public transport is a system (vehicle + charging infrastructure)

• Example Fleet 2: Average infrastructure availability of 87% with positive trend (Jul 17 was a planned upgrade)

thinkstep

DVANCIN

HOW – Operate & Maintain

- New skills for workers (drivers and maintenance): training
- Changes in the Bus Depot
 - Design, operations, cleaning, safety aspects...
- Optimised operation design and integration in bus network
 - Improvement of driving style
 - Keep service performance while reducing infrastructure
- Coordination with other services: firefighters, police...
- Optimisation of charging operation at bus depot & opportunity chargers (operation vs costs)
 - Smart charging
 - Optimisation of auxiliaries' energy consumption
- Facilitate update technology & standard
- Evaluate operations and measure staff and passengers' satisfaction
- Decommissioning of buses, recycling batteries

"If you compare the noise level with that of other buses, it's an enormous difference". Kristina Book, driver on route 55

Ebus deployment

IF – Know & Decide

- Develop clean-buses deployment strategy
- Exchange of experiences
- Define own operation needs

WHEN – Plan & Regulate

- System approach
- Urban policies
- Funding & Financing
- Project governance

WHAT – Select & Procure

- Standardised/ interoperable solutions
- Procurement process principles
- Indicators for procurement evaluation
- Relationship with energy providers

HOW – Operate & Maintain

- Training (new competencies, processes)
- Operations (including charging operations)
- Maintenance (new garage settings)
- Decommissioning (battery after-life)

Joint Effort of Institutions Stakeholders Cities

33

DVANCING

CONCLUSION: Is electrification a Revolution?

Electrification already produced a revolution in public transport

From horse-powered to electric trams

Dr. Michael Faltenbacher Team Leader Mobility & Transport <u>Michael.faltenbacher@thinkstep.com</u>

www.zeeus.eu

thinkstep

